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LETI'ER TO THE EDITOR 

A numerical method for computing eigenvectors of a 
large matrix 

Hongqi Xu 
Department of Theoretical Physics, University o f  Lund, Siilvegatan 14A, S-22362 Lund, 
Sweden 

Received 15 April 1991 

Abstract. We introduce a new numerical method to determine eigenvectors of a 
Hamiltonian matrix. The method is particularly useful for matrices of large dimension. 
The essence of the method is to determine each phase in the expansion of an eigenvector 
by computing the projection weight to the eigenvector on a trial function with an arbitrary 
phase. The trial function depends on the unknown phase in the expansion afthe eigenvector, 
and we show that the weight takes its maximum value if the phase in the trial function 
taker the correct value of the phase in the expansion of the eigenvector. 

Many numerical methods have been developed for obtaining eigenvectors of a matrix. 
However, most standard methods require very large memory space when the dimension 
of the matrix becomes large. 

The Hamiltonian operator of a physical system can, in general, be expressed in 
the iorm oi a square matrix ti. i n e  ianczos aigoritnm ii j can bring the matrix H on 
tridiagonal form. The eigenvalues of the resulting tridiagonal matrix can be obtained 
by using the negative eigenvalue method of Dean and Martin [2]. The recursion method 
of Haydock et a1 [3] or the Nex quadrature method [4] can be used to find the weight, 
i.e. square of the absolute value of the overlap, of an eigenvector on the original basis 
functions. We will here demonstrate a new method which can be used to obtain the 
remainriig un~nuwri quarirrrica, LIK yrrascs i n  ~ I C :  r;rp"ivu vi L ~ K  C:L~C:UVGLLW. 

We first summarize the basic formulae in the Lanczos, Haydock and Nex methods. 
(For the negative eigenvalue method of Dean and Martin, see a review given by Dean 
[ 5 ] . )  In the Lanczos method [l], the matrix H is given in tridiagonal form by using 
the recursion relation 

. .  :.:-- .L^ -L---- :- .L̂  :-- -.-.l.- -: ~ -.-- 

h I.. \ - U I . . \ - n l . , \ - h l . ,  \ I , \  
""+ll"n+lf-  .'I""/ ""I-"/ "nl-n-l l .  

Here lu-,) is taken as zero and luo) is any linear combination of a set of original basis 
functions {I&), a = 1 , .  . . , N}, assumed orthonormal. In the basis set {lu.)) the matrix 
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thus takes the form 

ao b, 

b2 a2 b3 

bN-3 R N - ~  bN-2 

bN-1 a N - 1  

H =  

where {a"} and { b n ]  are called recursion coefficients. The set {lu.)) is also orthonormal. 
The Hamiltonian matrix in (2) obviously depends on the choice of luo). If uo) is 
orthogonal to an eigenvector, that eigenvector does not appear as a solution. This can 
be used to advantage by cutting out solutions of a symmetry that is not of interest. 

In the recursion merhod of Haydock et al [3], the diagonal matrix element of the 
Green function G( E )  ( E  - H ) - '  corresponding to the starting vector luo) is expressed 
in terms of the recursion coefficients {an}  and {b.} in the form of a continued fraction: 

1 GG@) = !gal G@ )[us) = 
b: 

E - a , -  
b: 
b: 

E - a , -  
(3) E - a 2 - -  E - ' .  _ '  

The poles of G,(E)  give the eigenvalues of H; and the imaginary part of C,!E +ie)  
is related to the local density of states (LDOS) po corresponding to the starting vector 
luo) by the following equation: 

(4) 
1 .  N 

p o ( E )  = 1 lojo128(E - E,) = -- Iim Im G d E  +ie) 
71 E-m i = l  

where wio=(uol'pi) and Iq;) is an eigenvector. Equation (4) makes it clear that for 
eigenstates whose eigenvectors have zero projection on the starting vector luo), the 
eigenvalues cannot be obtained by solving the eigenequation of the tridiagonal 
Hamiltonian matrix given in (2). Equation (4) also gives an explicit way for computing 
the Ioiol, i.e. the absolute values of the overlaps of the eigenvectors on all the original 
basis functions I&), by setting successively the different basis functions as the starting 
vector luo). One numerical difficulty to obtain 1o,*,1 by this method is that one has to 
integrate the Green function Coo( E )  which contains many 8-function peaks. 

The quadrature method introduced by Nex [4] can be used to compute the projection 
loiol directly from the recursion coefficients {a"} and { b A ,  which often is an advantage, 
and thus the difficulty in the Haydock method associated with the integration of the 
&functions can be overcome. In this method, the projection weight Ioio12 is expressed 
by the following equation: 

b i o i 2  = (qN-j(E>))/(P'N(El)) ( 5 )  

where p,(E,)  and q N - l (  E , )  are two polynomials calculated from recurrence relations 
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with theinitial conditions p - , ( E , ) = q _ , ( E j ) = O , p , ( E i ) = l  and q, (E, )=  b i = l .  
In this paper, a new method is developed for computing the eigenvectors of a large 

square matrix H. We will now show how (the phases in) the expansion of an eigenvector 
can be obtained. 

We first calculate the eigenvalues E, and the projections loiol on the basis functions 
I&), using a numerical procedure as described above. For the ith eigenstate, the 
eigenvector IpJ can be expressed in terms of the projections Ioiol: 

N 

lai)= exp(i&)lo;,llrb,) (7) 
- = I  

where exp(i8,) are phase factors, and e, ( O S  et. < 2 ~ )  are unknown phaseshifts. The 
projections lwiol satisfy the normalization condition 

,. 
Jo,J‘=I. (8) 

o=, 

Since only relative phaseshifts have effect on physical results, we choose, without loss 
of generality, e., = 0 and rewrite (7) as 

N 

I d =  lbilll+J+ 1 exp(i&o)lwml I d d .  (9) 
0 = 2  

We begin with the determination of Bi2 in (9) by defining the following normalized 
test function: 

with a trial phaseshift &. Remember that we have assumed that the basis functions 
(I+-), a = 1,. . . , N }  are all orthonormal. The projection weight lGii2(it2)I2 of the ith 
eigenvector Iqi) on the test function is given by 

It is very easy to show that l & ( & ) 1 2  is bounded by (~ojl~2*~~;2~2)2/(~o~,~z+~oj2~2)r i.e. 
the following inequality holds: 

(loill’ - Iwj21’)2/(loi112+ lWi2I2) l&(tji2)12 S lo;,I2+ 1oi212. (12) 

When and only when the trial phaseshift & is equal to the true phaseshift e;, in (9), 
the weight ~ & ( ~ j 2 ) ~ 2  takes its maximum value, i.e. 

if ei2 = B i z .  (13) 
This suggests a numerical procedure for the determination of the relative phaseshift 
e,, in (9) as follows. We first construct a normalized test function of the form given 
in (10) from the calculated weights Ioill’ and Iwi212 with an arbitrarily trial phaseshift, 
and calulate the weight IGiZ1’ of the eigenvector on the test function using, for example, 
the quadrature method. We then vary the trial phaseshift and repeat the calculations, 
until we find a value of the trial shift which gives the maximum (Iwjllz+lwi212) of the 

- 2 I 4 2 I Z =  Ioi11’+10i2 
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projection weight 1 & ~ 1 ~ .  This value is the true value of the relative phaseshift e,, 
presented in (9). Here, we note that this procedure is very easy to implement, because 
the projection weight lGji2I2 is a cosine function of the trial phaseshift. 

Using exactly the same procedure, we can determine the values for all the relative 
phaseshifts {&) in (9). and the eigenvector of the ith eigenstate is then obtained. 

Our numerical method becomes very simple if the matrix of the Hamiltonian H is 
real. In this case, all the relative phaseshifts {ejm} can only have the values 0 and T. 

Let us make the following notes about our numerical method. (i)  A very useful 
feature of the method is that it can be used to calculate the eigenvectorfor any eigenstate 
without having any information about other eigenstates. (ii) The method does not 
require storage of the matrix of the unitary transformation generated by the Lanczos 
scheme or any other scheme. Therefore, the eigenequation of a large Hamiltonian 
matrix czn be sa!ved on ordicz!y works!atians ar s ~ e n  psrsona! computers. (iii! !!! 
order to derive (9), we have chosen S;, = O  and left all other relative phaseshifts to be 
determined. However, we can choose any one of the phaseshifts in (7) to be zero and 
compute all others relative to this one. (iv) Only the phaseshifts for the terms where 
the eigenvector has non-zero projection weight need to be computed. This observation 
is very useful in study of eigenstates which are localized and/or have specific symmetry. 
(v) The accuracy of the method depends on how accurately the eigenvalues and the 
projections of the eigenvectors are determined. (It is worth mentioning that the Lanczos 
scheme and the negative eigenvalue and the quadrature methods can be used to 
determine the eigenvalues and the projection weights to arbitrarily high accuracy, at 
least for some eigenstates.) (vi) The present numerical procedure is applicable to both 
real and complex Hamiltonian matrices, provided they are represented in an orthonor- 
mal basis. 

In summary, we have presented a new numerical method for computing eigenvectors 
of large square Hamiltonian matrices. The method does not require storage of unitary 
transformation matrices and, therefore, the eigenequations of large Hamiltonian 
matrices can be solved on ordinary work stations or even personal computers. An 
application of the method can be found in our earlier publication [6] where a 
Hamiltonian matrix of dimension 10 648 x 10 648 was treated. Further applications and 
the generalization of the method in order to compute eigenvectors represented in a 
non-orthogonal basis are in progress. 

I am very grateful to Professor L Hedin for his continuous support and encouragement 
and for his critical reading of the manuscript. 

n.erefm,  we en!y have !WO test f'.nctian: !-CY each :e!a!ive phaseslift. 
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